Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(2): e10882, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38327689

RESUMO

Phytoplankton species exhibit fundamental temperature niches that drive observed species distributions linked to realized temperature niches. A recent analysis of field observations of Prochlorococcus showed that for all ecotypes, the realized niche was, on average, colder and wider than the fundamental niche. Using a simple trait-based metacommunity model that resolves fundamental temperature niches for a range of competing phytoplankton, we ask how dispersal and local temperature variability influence species distributions and diversity, and whether these processes help explain the observed discrepancies between fundamental and realized niches for Prochlorococcus. We find that, independently, both dispersal and temperature variability increase realized temperature niche widths and local diversity. The combined effects result in high diversity and realized temperature niches that are consistently wider than fundamental temperature niches. These results have broad implications for understanding the drivers of phytoplankton biogeography as well as for refining species distribution models used to project how climate change impacts phytoplankton distributions.

2.
Glob Chang Biol ; 30(1): e17093, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273480

RESUMO

Phytoplankton exhibit diverse physiological responses to temperature which influence their fitness in the environment and consequently alter their community structure. Here, we explored the sensitivity of phytoplankton community structure to thermal response parameterization in a modelled marine phytoplankton community. Using published empirical data, we evaluated the maximum thermal growth rates (µmax ) and temperature coefficients (Q10 ; the rate at which growth scales with temperature) of six key Phytoplankton Functional Types (PFTs): coccolithophores, cyanobacteria, diatoms, diazotrophs, dinoflagellates, and green algae. Following three well-documented methods, PFTs were either assumed to have (1) the same µmax and the same Q10 (as in to Eppley, 1972), (2) a unique µmax but the same Q10 (similar to Kremer et al., 2017), or (3) a unique µmax and a unique Q10 (following Anderson et al., 2021). These trait values were then implemented within the Massachusetts Institute of Technology biogeochemistry and ecosystem model (called Darwin) for each PFT under a control and climate change scenario. Our results suggest that applying a µmax and Q10 universally across PFTs (as in Eppley, 1972) leads to unrealistic phytoplankton communities, which lack diatoms globally. Additionally, we find that accounting for differences in the Q10 between PFTs can significantly impact each PFT's competitive ability, especially at high latitudes, leading to altered modeled phytoplankton community structures in our control and climate change simulations. This then impacts estimates of biogeochemical processes, with, for example, estimates of export production varying by ~10% in the Southern Ocean depending on the parameterization. Our results indicate that the diversity of thermal response traits in phytoplankton not only shape community composition in the historical and future, warmer ocean, but that these traits have significant feedbacks on global biogeochemical cycles.


Assuntos
Diatomáceas , Dinoflagelados , Fitoplâncton/fisiologia , Ecossistema , Oceanos e Mares
3.
Proc Natl Acad Sci U S A ; 120(36): e2304590120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639597

RESUMO

Harmful algal blooms (HABs) are increasing globally, causing economic, human health, and ecosystem harm. In spite of the frequent occurrence of HABs, the mechanisms responsible for their exceptionally high biomass remain imperfectly understood. A 50-y-old hypothesis posits that some dense blooms derive from dinoflagellate motility: organisms swim upward during the day to photosynthesize and downward at night to access deep nutrients. This allows dinoflagellates to outgrow their nonmotile competitors. We tested this hypothesis with in situ data from an autonomous, ocean-wave-powered vertical profiling system. We showed that the dinoflagellate Lingulodinium polyedra's vertical migration led to depletion of deep nitrate during a 2020 red tide HAB event. Downward migration began at dusk, with the maximum migration depth determined by local nitrate concentrations. Losses of nitrate at depth were balanced by proportional increases in phytoplankton chlorophyll concentrations and suspended particle load, conclusively linking vertical migration to the access and assimilation of deep nitrate in the ocean environment. Vertical migration during the red tide created anomalous biogeochemical conditions compared to 70 y of climatological data, demonstrating the capacity of these events to temporarily reshape the coastal ocean's ecosystem and biogeochemistry. Advances in the understanding of the physiological, behavioral, and metabolic dynamics of HAB-forming organisms from cutting-edge observational techniques will improve our ability to forecast HABs and mitigate their consequences in the future.


Assuntos
Dinoflagelados , Proliferação Nociva de Algas , Humanos , Nitratos , Ecossistema , Fitoplâncton
4.
Nat Commun ; 13(1): 2448, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508497

RESUMO

The ecological and oceanographic processes that drive the response of pelagic ocean microbiomes to environmental changes remain poorly understood, particularly in coastal upwelling ecosystems. Here we show that seasonal and interannual variability in coastal upwelling predicts pelagic ocean microbiome diversity and community structure in the Southern California Current region. Ribosomal RNA gene sequencing, targeting prokaryotic and eukaryotic microbes, from samples collected seasonally during 2014-2020 indicate that nitracline depth is the most robust predictor of spatial microbial community structure and biodiversity in this region. Striking ecological changes occurred due to the transition from a warm anomaly during 2014-2016, characterized by intense stratification, to cooler conditions in 2017-2018, representative of more typical upwelling conditions, with photosynthetic eukaryotes, especially diatoms, changing most strongly. The regional slope of nitracline depth exerts strong control on the relative proportion of highly diverse offshore communities and low biodiversity, but highly productive nearshore communities.


Assuntos
Microbiota , Plâncton , Biodiversidade , Ecossistema , Microbiota/genética , Nutrientes , Plâncton/genética , Água do Mar
6.
Ecol Evol ; 11(22): 15720-15739, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34824785

RESUMO

It is difficult to make skillful predictions about the future dynamics of marine phytoplankton populations. Here, we use a 22-year time series of monthly average abundances for 198 phytoplankton taxa from Station L4 in the Western English Channel (1992-2014) to test whether and how aggregating phytoplankton into multi-species assemblages can improve predictability of their temporal dynamics. Using a non-parametric framework to assess predictability, we demonstrate that the prediction skill is significantly affected by how species data are grouped into assemblages, the presence of noise, and stochastic behavior within species. Overall, we find that predictability one month into the future increases when species are aggregated together into assemblages with more species, compared with the predictability of individual taxa. However, predictability within dinoflagellates and larger phytoplankton (>12 µm cell radius) is low overall and does not increase by aggregating similar species together. High variability in the data, due to observational error (noise) or stochasticity in population growth rates, reduces the predictability of individual species more than the predictability of assemblages. These findings show that there is greater potential for univariate prediction of species assemblages or whole-community metrics, such as total chlorophyll or biomass, than for the individual dynamics of phytoplankton species.

7.
Glob Chang Biol ; 27(7): 1431-1442, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33347685

RESUMO

Copepods are among the most abundant marine metazoans and form a key link between marine primary producers, higher trophic levels, and carbon sequestration pathways. Climate change is projected to change surface ocean temperature by up to 4°C in the North Atlantic with many associated changes including slowing of the overturning circulation, areas of regional freshening, and increased salinity and reductions in nutrients available in the euphotic zone over the next century. These changes will lead to a restructuring of phytoplankton and zooplankton communities with cascading effects throughout the food web. Here we employ observations of copepods, projected changes in ocean climate, and species distribution models to show how climate change may affect the distribution of copepod species in the North Atlantic. On average species move northeast at a rate of 14.1 km decade-1 . Species turnover in copepod communities will range from 5% to 75% with the highest turnover rates concentrated in regions of pronounced temperature increase and decrease. The changes in species range vary according to copepod traits with the largest effects found to occur in the cooling, freshening area in the subpolar North Atlantic south of Greenland and in an area of significant warming along the Scotian shelf. Large diapausing copepods (>2.5 mm) which are higher in lipids and a crucial food source for whales, may have an advantage in the cooling waters due to their life-history strategy that facilitates their survival in the arctic environment. Carnivorous copepods show a basin wide increase in species richness and show significant habitat area increases when their distribution moves poleward while herbivores see significant habitat area losses. The trait-specific effects highlight the complex consequences of climate change for the marine food web.


Assuntos
Mudança Climática , Copépodes , Animais , Ecossistema , Groenlândia , Temperatura , Zooplâncton
8.
Front Microbiol ; 10: 3155, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038586

RESUMO

Biomass distribution among size classes follows a power law where the Log-abundance of taxa scales to Log-size with a slope that responds to environmental abiotic and biotic conditions. The interactions between ecological mechanisms controlling the slope of locally realized size-abundance relationships (SAR) are however not well understood. Here we tested how warming, nutrient levels, and grazing affect the slope of phytoplankton community SARs in decadal time-series from eight Swiss lakes of the peri-alpine region, which underwent environmental forcing due to climate change and oligotrophication. We expected rising temperature to have a negative effect on slope (favoring small phytoplankton), and increasing nutrient levels and grazing pressure to have a positive effect (benefiting large phytoplankton). Using a random forest approach to extract robust patterns from the noisy data, we found that the effects of temperature (direct and indirect through water column stability), nutrient availability (phosphorus and total biomass), and large herbivore (copepods and daphnids) grazing and selectivity on slope were non-linear and interactive. Increasing water temperature or total grazing pressure, and decreasing phosphorus levels, had a positive effect on slope (favoring large phytoplankton, which are predominantly mixotrophic in the lake dataset). Our results therefore showed patterns that were opposite to the expected long-term effects of temperature and nutrient levels, and support a paradigm in which (i) small phototrophic phytoplankton appear to be favored under high nutrients levels, low temperature and low grazing, and (ii) large mixotrophic algae are favored under oligotrophic conditions when temperature and grazing pressure are high. The effects of temperature were stronger under nutrient limitation, and the effects of nutrients and grazing were stronger at high temperature. Our study shows that the phytoplankton local SARs in lakes respond to both the independent and the interactive effects of resources, grazing and water temperature in a complex, unexpected way, and observations from long-term studies can deviate significantly from general theoretical expectations.

9.
Proc Natl Acad Sci U S A ; 113(11): 2964-9, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26903635

RESUMO

Anthropogenic climate change has shifted the biogeography and phenology of many terrestrial and marine species. Marine phytoplankton communities appear sensitive to climate change, yet understanding of how individual species may respond to anthropogenic climate change remains limited. Here, using historical environmental and phytoplankton observations, we characterize the realized ecological niches for 87 North Atlantic diatom and dinoflagellate taxa and project changes in species biogeography between mean historical (1951-2000) and future (2051-2100) ocean conditions. We find that the central positions of the core range of 74% of taxa shift poleward at a median rate of 12.9 km per decade (km⋅dec(-1)), and 90% of taxa shift eastward at a median rate of 42.7 km⋅dec(-1) The poleward shift is faster than previously reported for marine taxa, and the predominance of longitudinal shifts is driven by dynamic changes in multiple environmental drivers, rather than a strictly poleward, temperature-driven redistribution of ocean habitats. A century of climate change significantly shuffles community composition by a basin-wide median value of 16%, compared with seasonal variations of 46%. The North Atlantic phytoplankton community appears poised for marked shift and shuffle, which may have broad effects on food webs and biogeochemical cycles.


Assuntos
Biota , Mudança Climática , Atividades Humanas , Fitoplâncton/fisiologia , Oceano Atlântico , Previsões , Humanos , Modelos Biológicos , Fitoplâncton/classificação , Dinâmica Populacional/tendências , Temperatura , Movimentos da Água
10.
Ecol Lett ; 16(4): 522-34, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23360597

RESUMO

Changes in marine plankton communities driven by environmental variability impact the marine food web and global biogeochemical cycles of carbon and other elements. To predict and assess these community shifts and their consequences, ecologists are increasingly investigating how the functional traits of plankton determine their relative fitness along environmental and biological gradients. Laboratory, field and modelling studies are adopting this trait-based approach to map the biogeography of plankton traits that underlies variations in plankton communities. Here, we review progress towards understanding the regulatory roles of several key plankton functional traits, including cell size, N2 -fixation and mixotrophy among phytoplankton, and body size, ontogeny and feeding behaviour for zooplankton. The trait biogeographical approach sheds light on what structures plankton communities in the current ocean, as well as under climate change scenarios, and also allows for finer resolution of community function because community trait composition determines the rates of significant processes, including carbon export. Although understanding of trait biogeography is growing, uncertainties remain that stem, in part, from the paucity of observations describing plankton functional traits. Thus, in addition to recommending widespread adoption of the trait-based approach, we advocate for enhanced collection, standardisation and dissemination of plankton functional trait data.


Assuntos
Plâncton/fisiologia , Animais , Organismos Aquáticos , Tamanho Corporal , Mudança Climática , Ecossistema , Herança Multifatorial , Fixação de Nitrogênio , Fitoplâncton/citologia , Fitoplâncton/fisiologia , Zooplâncton/fisiologia
11.
Am Nat ; 178(1): 98-112, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21670581

RESUMO

Mixotrophic organisms combine autotrophic and heterotrophic nutrition and are abundant in both freshwater and marine environments. Recent observations indicate that mixotrophs constitute a large fraction of the biomass, bacterivory, and primary production in oligotrophic environments. While mixotrophy allows greater flexibility in terms of resource acquisition, any advantage must be traded off against an associated increase in metabolic costs, which appear to make mixotrophs uncompetitive relative to obligate autotrophs and heterotrophs. Using an idealized model of cell physiology and community competition, we identify one mechanism by which mixotrophs can effectively outcompete specialists for nutrient elements. At low resource concentrations, when the uptake of nutrients is limited by diffusion toward the cell, the investment in cell membrane transporters can be minimized. In this situation, mixotrophs can acquire limiting elements in both organic and inorganic forms, outcompeting their specialist competitors that can utilize only one of these forms. This advantage can be enough to offset as much as a twofold increase in additional metabolic costs incurred by mixotrophs. This mechanism is particularly relevant for the maintenance of mixotrophic populations and productivity in the highly oligotrophic subtropical oceans.


Assuntos
Processos Autotróficos , Metabolismo Energético , Processos Heterotróficos , Modelos Biológicos , Plâncton/fisiologia , Fenômenos Biofísicos , Simulação por Computador , Ecossistema , Dinâmica Populacional
12.
Science ; 327(5972): 1509-11, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20185684

RESUMO

Spatial diversity gradients are a pervasive feature of life on Earth. We examined a global ocean circulation, biogeochemistry, and ecosystem model that indicated a decrease in phytoplankton diversity with increasing latitude, consistent with observations of many marine and terrestrial taxa. In the modeled subpolar oceans, seasonal variability of the environment led to competitive exclusion of phytoplankton with slower growth rates and lower diversity. The relatively weak seasonality of the stable subtropical and tropical oceans in the global model enabled long exclusion time scales and prolonged coexistence of multiple phytoplankton with comparable fitness. Superimposed on the decline in diversity seen from equator to pole were "hot spots" of enhanced diversity in some regions of energetic ocean circulation, which reflected lateral dispersal.


Assuntos
Biodiversidade , Ecossistema , Fitoplâncton , Água do Mar , Biomassa , Clima , Meio Ambiente , Geografia , Modelos Biológicos , Oceanos e Mares , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/fisiologia , Dinâmica Populacional , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...